Well-posedness for Hyperbolic Problems

ثبت نشده
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hadamard Well-posedness for a Family of Mixed Variational Inequalities and Inclusion Problems‎

In this paper, the concepts of well-posednesses and Hadamard well-posedness for a family of mixed variational inequalities are studied. Also, some metric characterizations of them are presented and some relations between well-posedness and Hadamard well-posedness of a family of mixed variational inequalities is studied. Finally, a relation between well-posedness for the family of mixed variatio...

متن کامل

Tariel Kiguradze ON SOLVABILITY AND WELL-POSEDNESS OF INITIAL–BOUNDARY VALUE PROBLEMS FOR HIGHER ORDER NONLINEAR HYPERBOLIC EQUATIONS

The sufficient conditions for unique local solvability, global solvability and of well-posedness of initial-boundary value problems for higher order nonlinear hyperbolic equations are studied.

متن کامل

Well{posedness of Stiff Hyperbolic Systems

The theory of stii well{posedness of initial value problems for hyperbolic systems with large relaxation terms is reviewed. Furthermore, an asymptotic expansion of solutions with respect to the relaxation parameter is presented. Finally, the theory is illustrated with an example and an outlook concerning boundary value problems is given.

متن کامل

Well-posedness of hyperbolic Initial Boundary Value Problems

Assuming that a hyperbolic initial boundary value problem satsifies an a priori energy estimate with a loss of one tangential derivative, we show a well-posedness result in the sense of Hadamard. The coefficients are assumed to have only finite smoothness in view of applications to nonlinear problems. This shows that the weak Lopatinskii condition is roughly sufficient to ensure well-posedness ...

متن کامل

The hyperbolic region for hyperbolic boundary value problems

The well-posedness of hyperbolic initial boundary value problems is linked to the occurrence of zeros of the so-called Lopatinskii determinant. For an important class of problems, the Lopatinskii determinant vanishes in the hyperbolic region of the frequency domain and nowhere else. In this paper, we give a criterion that ensures that the hyperbolic region coincides with the projection of the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016